Panasonic ideas for life

CS (AV6) SWITCHES

FEATURES

- Using a connector for connections significantly improves operation effectiveness.
Applicable connector:
XA connector produced by JST Mfg. Co., Ltd.
- Contact: SXA-001T-P0. 6
- Housing: XAP-02V-1

- Contact reliability is achived by simple dust prevension guard and goldclad double layer contacts

- The contact arrangement is available in two types, the SPST-NC and the SPST-NO.
- The lever position is available in two types.
Standard lever position
"Standard lever position" refers to a position in which the lever is installed with the plunger close to the reference.

Backward lever position
"Backward lever position" refers to a position in which the lever is installed with the plunger far away from the reference.

TYPICAL APPLICATIONS

- Detection of vending machine condition whether cans are out of stock
- Ball detection of pinball game machine
- PPC (Plain Paper Copier)
- LBP (Laser Beam Printer)

ORDERING INFORMATION

[^0]2. When ordering UL, CSA and TÜV approved types, please attach suffix " 3 " to the part no.

PRODUCT TYPES

1. Lever position: Standard

Actuator	Contact arrangement		
		SPST-NC	SPST-NO
Pin plunger	0.50 N	AV620264	AV630264
	1.50 N	AV620564	AV630564
	0.20 N	AV622264	AV632264
Simulated roller lever	0.50 N	AV622564	AV632564
	0.20 N	AV624264	AV634264
	0.50 N	AV624564	AV634564

Remarks: 1. When ordering UL, CSA and TÜV approved (under application) types, please attach suffix " 3 " to the part no.
2. Lever position: Backward

Actuator	Contact arrangement		
		SPST-NC	SPST-NO
Hinge lever	0.35 N	AV62221264	AV63221264
	1.00 N	AV62251264	AV63251264
	Roller lever	0.35 N	AV62421264

Remarks: 1. When ordering UL, CSA and TÜV approved (under application) types, please attach suffix " 3 " to the part no.

SPECIFICATIONS

1. Contact rating

Contact		Voltage	Resistive load ($\cos \phi \fallingdotseq 1$)
Gold clad double layer		30[V] DC	$0.1[\mathrm{~A}]$
		5[V] DC	1[mA] Low-level circuit ratin
2. Characteristics			
Expected life	Mechanical	Min. 5×10^{5} (at 60 cpm) (O.T. max.)	
	Electrical (Rated load)	Min. 2×10^{5} (at 20 cpm) (O.T. max.)	
Insulation resistance		Min. $100 \mathrm{M} \Omega$	
Dielectric strength	Between terminals	1,000 Vrms for 1 min .	
	Between terminals and other exposed metal parts	1,500 Vrms for 1 min.	
	Between terminals and ground	1,500 Vrms for 1 min .	
Contact resistance (initial)		$100 \mathrm{M} \Omega$ max. (by voltage drop 0.1 A 6 to 8 VDC) Value includes the resistance between the connector and the lead (\#AWG28, length: 50 mm 1.969 inch)	
Viblation resistance		10 to 55 Hz at single amplitude of 0.75 mm (Contact opening: max. 1 msec .)	
Shock resistance		Applied shock 1.50 N type: $\mathrm{Min} .300 \mathrm{~m} / \mathrm{s}^{2}$ \{Contact opening: Max. 1 msec .\} 0.50 N type: $\mathrm{Min} .150 \mathrm{~m} / \mathrm{s}^{2}$ \{Contact opening: Max. 1 msec .\}	
Connector insertion force		Max. 20N (inserted in removal direction)	
Connector holding force		Min. 20 N (extracted by static load, in removal direction)	
Connector removal operating times		Max. 5 times (in removal direction)	
Allowable operating speed (No load)		0.1 to $1,000 \mathrm{~mm} / \mathrm{s}$ (at pin plunger)	
Max. operating cycle rate (No load)		300 cpm	
Ambient temperature		$\begin{aligned} & -25 \text { to }+85^{\circ} \mathrm{C}-13 \text { to }+185^{\circ} \mathrm{F} \\ & \text { (No freezing and condensing) } \end{aligned}$	
Unit weight		Approx. 2.5g .090z (pin plunger type)	

AV6

3. Operating characteristics

1) Lever position: Standard

Type of actuator	Operating force, Max.	Release force, Min.	Pretravel, Max. mm inch	Movement differential, Max, mm inch	Overtravel, Min. mm inch	Operating position, mm inch
Pin plunger	0.50 N	0.04 N	$\begin{aligned} & 0.6 \\ & .024 \end{aligned}$	$\begin{aligned} & 0.1 \\ & .004 \end{aligned}$	$\begin{gathered} 0.4 \\ .016 \end{gathered}$	$\begin{gathered} 8.4 \pm 0.3 \\ .331 \pm .012 \end{gathered}$
	1.50 N	0.25 N				
Hinge lever	0.20 N	0.02 N	$\begin{aligned} & 2.6 \\ & .102 \end{aligned}$	$\begin{aligned} & 0.8 \\ & .031 \end{aligned}$	$\begin{gathered} 1.2 \\ .047 \end{gathered}$	$\begin{aligned} & 10.0 \pm 0.8 \\ & .394 \pm .031 \end{aligned}$
	0.50 N	0.06 N				
Simulated roller lever	0.20 N	0.02 N	$\begin{aligned} & 2.6 \\ & .102 \end{aligned}$	$\begin{aligned} & 0.8 \\ & .031 \end{aligned}$	$\begin{aligned} & 1.2 \\ & .047 \end{aligned}$	$\begin{aligned} & 12.2 \pm 0.8 \\ & .480 \pm .031 \end{aligned}$
	0.50 N	0.06 N				
Roller lever	0.20 N	0.02 N	$\begin{aligned} & 2.6 \\ & .102 \end{aligned}$	$\begin{aligned} & 0.8 \\ & .031 \end{aligned}$	$\begin{gathered} 1.2 \\ .047 \end{gathered}$	$\begin{aligned} & 15.7 \pm 0.8 \\ & .618 \pm .031 \end{aligned}$
	0.50 N	0.06 N				

2) Lever position: Backward

Type of actuator	Operating force, Max.	Release force, Min.	Pretravel, Max. mm inch	Movement differential, Max, mm inch	Overtravel, Min. mm inch	Operating position, mm inch
Hinge lever	0.35 N	0.03 N	1.4	0.6	0.7	9.2 ± 0.6
	1.00 N	$0.10 \mathrm{~N}\{$.055	.024	.028	$.362 \pm .024$
Simulated	0.35 N	0.03 N	1.4	0.6	0.7	11.3 ± 0.6
roller lever	1.00 N	0.10 N	.055	.024	.028	$.445 \pm .024$
Roller lever	0.35 N	0.03 N	1.4	0.6	0.7	14.9 ± 0.6
	1.00 N	0.10 N	.055	.024	.028	$.587 \pm .024$

DIMENSIONS

mm inch General tolerance: $\pm 0.25 \pm .010$

1. Pin plunger

2. Hinge lever

Lever position: Standard

Pretravel, Max. mm inch	2.6 .102
Movement differential, Max. mm inch	0.8 .031
Overtravel, Min. mm inch	1.2 .047
Operating position	Distance from mounting hole, mm inch

Lever position: Backward

3. Simulated roller lever Lever position: Standard

Pretravel, Max. mm inch	2.6 .102	
Movement differential, Max. mm inch	0.8 .031	
Overtravel, Min. mm inch	1.2 .047	
Operating position	Distance from mounting hole, mm inch	12.2 ± 0.8

Lever position: Backward

4. Roller lever

Lever position: Standard

Pretravel, Max. mm inch	2.6 .102
Movement differential, Max. mm inch	0.8 .031
Overtravel, Min. mm inch	
Operating position	Distance from mounting hole, mm inch

Lever position: Backward

Pretravel, Max. mm inch	1.4 .055	
Movement differential, Max. mm inch	0.6 .024	
Overtravel, Min. mm inch		0.7 .028
Operating position	Distance from mounting hole, mm inch	14.9 ± 0.6

NOTES

1. Fastening of the switch body

1) Use flat filister head M2.3 screws to mount switches with less than a $0.29 \mathrm{~N} \cdot \mathrm{~m}$ torque. Use of screws washers or adhesive lock is recommended to prevent loosening of the screws.
2) Check insulation distance between ground and each terminal.
3) When the operation object is in the free position, force should not be applied directly to the actuator or pin plunger. Also force should be applied to the pin plunger from vertical direction to the switch.
4) In setting the movement after operation, the over-travel should be set more than 70% as a standard.
With the lever type, do not apply excessive force in the direction opposite to the movement, or from the horizontal direction.
5) For a lever type, the force from the reverse to the operation direction should not be applied.

2. About the connector

1) The connector on the CS switch is designed to fit with the XA connector produced by JST Mfg. Co., Ltd. Do not use any connector other than the specified connector, or solder the terminals directly. 2) Make sure leads are arranged so that no constant force is applied to them when the connectors are mated.
2) Keep the connector straight when inserting it. If it is inserted at an angle, it may snag near the entrance, or it may be inserted too forcefully.
3) Problems thought to be caused by the XA connector, which is specified as conforming to the CS switch connector, are not covered by the warranty. Please contact JST Mfg., Co., Ltd. and request cooperation in resolving the problem.

3. Selection of the switch

When specifying the switch, allow $\pm 20 \%$ to the listed operating characteristics.

4. Environment

Avoid using the switches in the following conditions;

- In corrosive gases, such as silicon gas
- In a dusty environment

When cleaning the switch, use a diluted form of a neutral cleaning agent. Using acidic or alkali solvents can adversely affect the performance of the switch.

5. Precautions concerning circuits

The CS switch is designed specifically for low-voltage, low-current loads. Avoid using it at loads that exceed the resistive load.
6. Quality check under actual loading conditions
To assure reliability, check the switch under actual loading conditions. Avoid any situation that may adversely affect switching performance.

[^0]: Remarks: 1. Standard packing Inner carton: 100 pcs. Outer carton: 1,000 pcs.

